Question	Scheme	Marks	AOs
1(a)	$u_2 = k - 12, \ u_3 = k - \frac{24}{k - 12}$	M1	1.1b
	$u_1 + 2u_2 + u_3 = 0 \Longrightarrow 2 + 2(k - 12) + k - \frac{24}{k - 12} = 0$	dM1	1.1b
	$\Rightarrow 3k - 22 - \frac{24}{k - 12} = 0 \Rightarrow (3k - 22)(k - 12) - 24 = 0$ $\Rightarrow 3k^2 - 36k - 22k + 264 - 24 = 0$ $\Rightarrow 2k^2 - 58k + 240 = 0$	A1*	2.1
	$\rightarrow 3\kappa - 36\kappa + 240 \equiv 0$	(3)	
(b)	$k = 6, \left(\frac{40}{3}\right)$	M1	1.1b
	k = 6 as k must be an integer	A1	2.3
		(2)	
(c)	$(u_3 =)10$	B1	2.2a
		(1)	
(6 marks)			
Notes			

(a)

M1: Attempts to apply the sequence formula once for either u_2 or u_3 .

Usually for $u_2 = k - \frac{24}{2}$ o.e. but could be awarded for $u_3 = k - \frac{24}{their "u_2"}$

dM1: Award for

- attempting to apply the sequence formula to find both u_2 and u_3
- using $2+2"u_2"+"u_3"=0 \Rightarrow$ an equation in k. The u_3 may have been incorrectly adapted

A1*: Fully correct work leading to the printed answer. There must be

• (at least) one correct intermediate line between $2+2(k-12)+k-\frac{24}{k-12}=0$ (o.e.) and the

given answer that shows how the fractions are "removed". E.g. (3k-22)(k-12)-24=0

• no errors in the algebra. The = 0 may just appear at the answer line.

(b)

M1: Attempts to solve the quadratic which is implied by sight of k = 6.

This may be awarded for any of

- $3k^2 58k + 240 = (ak \pm c)(bk \pm d) = 0$ where ab = 3, cd = 240 followed by k = 3
- an attempt at the correct quadratic formula (or completing the square)
- a calculator solution giving at least k = 6

A1: Chooses k = 6 and gives a minimal reason

Examples of a minimal reason are

- 6 because it is an integer
- 6 because it is a whole number
- 6 because $\frac{40}{3}$ or 13.3 is not an integer

(c)

B1: Deduces the correct value of u_3 .

Question	Scheme	Marks	AOs
2	$a = \left(\frac{3}{4}\right)^2 \text{ or } a = \frac{9}{16}$ or $r = -\frac{3}{4}$	B1	2.2a
	$\sum_{n=2}^{\infty} \left(\frac{3}{4}\right)^n \cos(180n)^\circ = \frac{\frac{9}{16}}{1 - \left(-\frac{3}{4}\right)} = \dots$	M1	3.1a
	$=\frac{9}{28}*$	A1*	1.1b
-		(3)	
	Alternative 1: $\sum_{n=1}^{\infty} \left(\frac{3}{4}\right)^n \cos(180n)^\circ = \frac{-\frac{3}{4}}{1 - \left(-\frac{3}{4}\right)} = \dots \text{ or } r = -\frac{3}{4}$	B1	2.2a
	$\sum_{n=2}^{\infty} \left(\frac{3}{4}\right)^n \cos(180n)^\circ = -\frac{3}{7} - \left(-\frac{3}{4}\right)$	M1	3.1a
	$=\frac{9}{28}*$	A1*	1.1b
	Alternative 2:		
	$\sum_{n=2}^{\infty} \left(\frac{3}{4}\right)^n \cos(180n)^\circ = \left(\frac{3}{4}\right)^2 - \left(\frac{3}{4}\right)^3 + \left(\frac{3}{4}\right)^4 - \dots$	B1	2.2a
	$= \left(\frac{3}{4}\right)^{2} + \left(\frac{3}{4}\right)^{4} + \dots - \left(\frac{3}{4}\right)^{3} - \left(\frac{3}{4}\right)^{5} - \dots$ $\left(\frac{3}{4}\right)^{2} + \left(\frac{3}{4}\right)^{4} + \dots = \left(\frac{3}{4}\right)^{2} \left(\frac{1}{1 - \left(\frac{3}{4}\right)^{2}}\right) \text{ or } - \left(\frac{3}{4}\right)^{3} - \left(\frac{3}{4}\right)^{5} - \dots = -\left(\frac{3}{4}\right)^{3} \left(\frac{1}{1 - \left(\frac{3}{4}\right)^{2}}\right)$ $\sum_{n=2}^{\infty} \left(\frac{3}{4}\right)^{n} \cos\left(180n\right)^{\circ} = \left(\frac{3}{4}\right)^{2} \left(\frac{1}{1 - \left(\frac{3}{4}\right)^{2}}\right) - \left(\frac{3}{4}\right)^{3} \left(\frac{1}{1 - \left(\frac{3}{4}\right)^{2}}\right)$	M1	3.1a
	$=\frac{9}{28}*$	A1*	1.1b
	Alternative 3:		
	$\sum_{n=2}^{\infty} \left(\frac{3}{4}\right)^n \cos\left(180n\right)^\circ = S = \left(\frac{3}{4}\right)^2 - \left(\frac{3}{4}\right)^3 + \left(\frac{3}{4}\right)^4 - \dots$	B1	2.2a
	$= \left(\frac{3}{4}\right)^2 \left(1 - \left(\frac{3}{4}\right) + \left(\frac{3}{4}\right)^2 - \dots\right) = \left(\frac{3}{4}\right)^2 \left(\frac{1}{4} + S\right) \Longrightarrow \frac{7}{16}S = \frac{9}{64} \Longrightarrow S = \dots$	M1	3.1a
	$=\frac{9}{28}*$	A1*	1.1b
(3 marks)			
Notes			
B1: Deduces the correct value of the first term or the common ratio. The correct first term can be			

seen as part of them writing down the sequence but must be the **first** term. M1: Recognises that the series is infinite geometric and applies the sum to infinity GP formula with $a = \frac{9}{16}$ and $r = \pm \frac{3}{4}$ A1*: Correct proof Alternative 1: B1: Deduces the correct value for the sum to infinity (starting at n = 1) or the common ratio M1: Calculates the required value by subtracting the first term from their sum to infinity A1*: Correct proof Alternative 2: B1: Deduces the correct value of the first term or the common ratio. M1: Splits the series into "odds" and "evens", attempts the sum of both parts and calculates the required value by adding both sums A1*: Correct proof Alternative 3: B1: Deduces the correct value of the **first** term M1: A complete method by taking out the first term, expresses the rhs in terms of the original sum and rearranges for "S"

A1*: Correct proof

Question	Scheme	Marks	AOs
3 (a)	$\lim_{\delta x \to 0} \sum_{x=2.1}^{6.3} \frac{2}{x} \delta x = \int_{2.1}^{6.3} \frac{2}{x} \mathrm{d}x$	B1	1.2
		(1)	
(b)	$= \left[2\ln x\right]_{2.1}^{6.3} = 2\ln 6.3 - 2\ln 2.1$	M1	1.1b
	$= \ln 9$ CSO	A1	1.1b
		(2)	
			(3 marks)
Notes:			

Mark (a) and (b) as one

(a)

B1: States that $\int_{2.1}^{6.3} \frac{2}{x} dx$ or equivalent such as $2 \int_{2.1}^{6.3} x^{-1} dx$ but must include the limits and the dx. Condone $dx \leftrightarrow \delta x$ as it is very difficult to tell one from another sometimes (b) M1: Know that $\int \frac{1}{x} dx = \ln x$ and attempts to apply the limits (either way around) Condone $\int \frac{2}{x} dx = p \ln x$ (including p = 1) or $\int \frac{2}{x} dx = p \ln qx$ as long as the limits are applied. Also be aware that $\int \frac{2}{x} dx = \ln x^2$, $\int \frac{2}{x} dx = 2\ln |x| + c$ and $\int \frac{2}{x} dx = 2\ln cx$ o.e. are also correct $[p \ln x]_{2.1}^{6.3} = p \ln 6.3 - p \ln 2.1$ is sufficient evidence to award this mark A1: CSO ln 9. Also answer = $\ln 3^2$ so k = 9 is fine. Condone $\ln |9|$

The method mark must have been awarded. Do not accept answers such as $\ln \frac{39.69}{4.41}$

Note that solutions appearing from "rounded" decimal work when taking lns should not score the final mark. It is a "show that" question

E.g. $[2 \ln x]_{2.1}^{6.3} = 2 \ln 6.3 - 2 \ln 2.1 = 2.197 = \ln k \implies k = e^{2.197} = 8.998 = 9$

Question	Scheme	Marks	AOs
4(a)(i)	$a_1 = 3, a_2 = 5, a_3 = 3 \dots$	B1	1.1b
(ii)	2	B1	1.1b
		(2)	
(b)	$\sum_{n=1}^{85} a_n = 42 \times (3+5) + 3 \text{ o.e.}$	M1	3.1a
	= 339	A1	1.1b
		(2)	
			(4 marks)
Notor			

Notes:

(a)(i) Mark (a)(i) and (a)(ii) together.

B1: States the values of at least $a_2 = 5$ and $a_3 = 3$. This is sufficient but if more terms are given they must be correct. There is no need to see e.g. $a_2 = ..., a_3 = ...$ just look for values.

Allow an algebraic approach e.g. $a_{n+1} = 8 - a_n$, $a_{n+2} = 8 - (8 - a_n) = a_n$

85

A conclusion is **not** needed.

(a)(ii)

B1: States that the order of the periodic sequence is 2

Allow "second order", "it repeats every 2 numbers" or equivalent statements that convey the idea of the period being 2.

Note that ± 2 is B0

(b)

M1: Attempts a correct method to find
$$\sum_{n} a_n$$

For example
$$\sum_{n=1}^{85} a_n = 42 \times (3+5) + 3$$
, $\sum_{n=1}^{85} a_n = \frac{84}{2} \times 3 + 42 \times 5 + 3$ or $\sum_{n=1}^{85} a_n = 43 \times (3+5) - 5$
or $\sum_{n=1}^{85} a_n = 43 \times 3 + 42 \times 5$ or $\sum_{n=1}^{85} a_n = \frac{85}{2} \times 8 - 1$

There may be other methods e.g. "Chunking": $5 \times (3 + 5) = 40$, $40 \times 8 = 320$, $320 + 3 \times 3 + 2 \times 5 = 339$ A1: 339. Correct answer only scores both marks.

Attempts to use an AP formula score M0

Question	Scheme	Marks	AOs
5(a)(i)	e.g. $(u_2 =)35 + 7\cos\left(\frac{\pi}{2}\right) - 5(-1)^1 = 40 *$	B1*	2.1
(ii)	$u_{3} = 40 + 7\cos\left(\frac{2\pi}{2}\right) - 5(-1)^{2} (=28) \text{ or } u_{4} = "28" + 7\cos\left(\frac{3\pi}{2}\right) - 5(-1)^{3} (=33)$	M1	1.1b
	(2) (2)	A 1	1 1h
	$u_3 - 20$ and $u_4 - 55$	(3)	1.10
(b)(i)	$(u_5 =)35$	B1	2.2a
(ii)	e.g. $\sum_{r=1}^{25} u_r = 6(35 + 40 + "28" + "33") + 35$	M1	3.1a
	= 851	A1	1.1b
		(3)	
	Notes	(6	marks)
(a)	TUES		
(i)			
B1*: Corre	ect application of the formula with $n = 1$ and proceeds correctly to achieve an an	nswer of 4	0 with
no err	ors. Note that e.g., $(u_2 =)35 + 7\cos\left(\frac{35\pi}{2}\right) - 5(-1)^{35} = 35 + 0 + 5 = 40$ scores B0		
As a minin	num need to see e.g. $(u_2 =)35 + 7\cos(\frac{\pi}{2}) - 5(-1)^1 = 40$, $35 + 0 + 5 = 40$, $35 + 5 = 40$	0, 35-5(-	$(-1)^1 = 40$
(ii)			
M1: A corr	ect attempt to use the formula to find a value for u_3 or u_4		
Look f	for $n = 2$ substituted correctly into the given formula with $u_2 = 40$. May be implied	ied by $u_3 =$	= 28
Or the	ir calculated value of u_3 used with $n = 3$ substituted correctly into the given for	mula to fi	nd u_4
Condo	one use of calculator in degree mode which gives $u_3 = 41.989$ which may impl	y this mar	k if no
workin	ig is shown. If there is no working and u_3 is incorrect and u_4 is correct score M	0A0	
A1: Both co	prrect $u_3 = 28$ and $u_4 = 33$ If 28, 33 are listed then allow M1A1.		
	For both correct values only score M1A1		
(b)(i)	~		
B1: $(u_5 =)3$	5		
(ii)	25		
M1: Attem	apts a <u>correct</u> method to find $\sum_{r=1}^{2} u_r$		
There Some	are various ways e.g. attempts to add 35 to $6 \times$ the sum of their four values. other examples are:		
$\sum_{r=1}^{25} u_r =$	$(7 \times 35 + 6 \times 40 + 6 \times "28" + 6 \times "33"), \sum_{r=1}^{25} u_r = 7(35 + 40 + "28" + "33") - (40 + "28")$	"+"33"),	
$\sum_{r=1}^{25} u_r =$	$=\frac{25}{4}(35+40+"28"+"33")+1, 2(35+40+"28"+"33")=272, 272\times3=816$, 816+35	
There There	may be other methods seen but the calculation must be correct for their values. e is no working, with incorrect u_3 and/or u_4 you will need to check if their ans	wer impli	es a
correct	t method using $6(35+40+"28"+"33")+35$		
Attem	ots to use an AP/GP formula score M0		
A1: 851 (C	orrect answer with no working scores both marks)		